Columnar specificity of microvascular oxygenation and volume responses: implications for functional brain mapping.
نویسندگان
چکیده
Cortical neurons with similar properties are grouped in columnar structures and supplied by matching vascular networks. The hemodynamic response to neuronal activation, however, is not well described on a fine spatial scale. We investigated the spatiotemporal characteristics of microvascular responses to neuronal activation in rat barrel cortex using optical intrinsic signal imaging and spectroscopy. Imaging was performed at 570 nm to provide functional maps of cerebral blood volume (CBV) changes and at 610 nm to estimate oxygenation changes. To emphasize parenchymal rather than large vessel contributions to the functional hemodynamic responses, we developed an ANOVA-based statistical analysis technique. Perfusion-based maps were compared with underlying neuroanatomy with cytochrome oxidase staining. Statistically determined CBV responses localized accurately to individually stimulated barrel columns and could resolve neighboring columns with a resolution better than 400 microm. Both CBV and early oxygenation responses extended beyond anatomical boundaries of single columns, but this vascular point spread did not preclude spatial specificity. These results indicate that microvascular flow control structures providing targeted flow increases to metabolically active neuronal columns also produce finely localized changes in CBV. This spatial specificity, along with the high contrast/noise ratio, makes the CBV response an attractive mapping signal. We also found that functional oxygenation changes can achieve submillimeter specificity not only during the transient deoxygenation ("initial dip") but also during the early part of the hyperoxygenation. We, therefore, suggest that to optimize hemodynamic spatial specificity, appropriate response timing (using < or =2-3 sec changes) is more important than etiology (oxygenation or volume).
منابع مشابه
Spatiotemporal evolution of functional hemodynamic changes and their relationship to neuronal activity.
Brain imaging techniques such as functional magnetic resonance imaging (fMRI) have provided a wealth of information about brain organization, but their ability to investigate fine-scale functional architecture is limited by the spatial specificity of the hemodynamic responses upon which they are based. We investigated the spatiotemporal evolution of hemodynamic responses in rat somatosensory co...
متن کاملColumnar Resolution of Blood Volume and Oximetry Functional Maps in the Behaving Monkey Implications for fMRI
The ultimate goal of high-resolution functional brain mapping is single-condition (stimulus versus no-stimulus maps) rather than differential imaging (comparing two "stimulus maps"), because the appropriate ("orthogonal") stimuli are rarely available. This requires some component(s) of activity-dependent hemodynamic signals to closely colocalize with electrical activity, like the early increase...
متن کاملRapid Communication Columnar specificity of microvascular oxygenation and blood flow response in primary visual cortex: evaluation by local field potential and spiking activity
The relation of cortical microcirculation, oxygen metabolism, and underlying neuronal network activity remains poorly understood. Anatomical distribution of cortical microvasculature and its relationship to cortical functional domains suggests that functional organizations may be revealed by mapping cerebral blood flow responses. However, there is little direct experimental evidence and a lack ...
متن کاملSpatiotemporal dynamics of the BOLD fMRI signals: toward mapping submillimeter cortical columns using the early negative response.
The existence of the early-negative blood-oxygenation-level-dependent (BOLD) response is controversial and its practical utility for mapping brain functions with columnar spatial specificity remains questionable. To address these issues, gradient-echo BOLD fMRI studies were performed at 4.7 T and 9.4 T using the well-established orientation column model in the cat visual cortex. A robust transi...
متن کاملColumnar specificity of microvascular oxygenation and blood flow response in primary visual cortex: evaluation by local field potential and spiking activity.
The relation of cortical microcirculation, oxygen metabolism, and underlying neuronal network activity remains poorly understood. Anatomical distribution of cortical microvasculature and its relationship to cortical functional domains suggests that functional organizations may be revealed by mapping cerebral blood flow responses. However, there is little direct experimental evidence and a lack ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 3 شماره
صفحات -
تاریخ انتشار 2004